
On Paraconsistent Belief Revision in LP (Extended Abstract)
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Abstract

Belief revision aims at incorporating a new piece of informa-
tion into the beliefs of an agent. This process can be mod-
eled by the standard Katsuno and Mendelzon’s (KM) ratio-
nality postulates. However, these postulates suppose a clas-
sical setting and do not govern the case where (some parts
of) the beliefs of the agent are not consistent. In this work
we discuss how to adapt these postulates when the underlying
logic is Priest’s Logic of Paradox, in order to model a rational
change, while being a conservative extension of KM belief re-
vision. This paper is a summary of (Schwind, Konieczny, and
Pino Pérez 2022).

1 Introduction
Belief revision accommodates into an agent’s beliefs ϕ a
new, reliable, piece of evidence µ, where both ϕ and µ are
represented as propositional formulae. A revision operator
◦ is expected to satisfy a set of properties called KM pos-
tulates (denoted by (R1-R6)) (Alchourrón, Gärdenfors, and
Makinson 1985; Katsuno and Mendelzon 1991). These pos-
tulates translate the three core principles of belief change:
primacy of update, consistency, and minimality of change.
Every revision operator can be constructed by associating
each ϕ with a (plausibility) total preorder �ϕ over worlds:
when revising ϕ by µ, one takes as a result the models of µ
that are minimal in �ϕ.

An issue with the KM framework is that it does not gov-
ern the case of inconsistent inputs, whether it be the agent’s
beliefs ϕ or the new information µ. So a solution is to use
a paraconsistent logic, define the revision to be the conjunc-
tion, that allows one to derive sensible conclusions. But this
is not a belief change operation. As an example, consider
that the current beliefs of the agents are p ∧ ¬p ∧ q and that
the new piece of information is¬q. In this case, it is arguable
to consider that the variables p and q are independent, and
that the expected result could be p ∧ ¬p ∧ ¬q, i.e., one may
want to keep holding the conflict on p, while changing the
beliefs on the truth value of q. Simply speaking, we want to
do more than just conjunction.

For this purpose, we rephrase the KM postulates in a
particular paraconsistent setting: Priest’s Logic of Paradox
(Priest 1979) (LP for short), a three-valued logic, with the
third value meaning “inconsistent” (“both true and false”),

that allows to isolate inconsistencies in the concerned propo-
sitional variables. In LP, a world (which we call LP world),
is a three-valued interpretation. An LP world is an LP model
of a formula α if it makes α “true” or “both”. The LP entail-
ment relation is defined in terms of inclusion between sets of
LP models, i.e., α |=LP β iff JαK ⊆ JβK, where JαK denotes
the set of LP models of α. And α ≡LP β denotes the case
where JαK = JβK.

We discuss how to adapt the KM postulates in order to
model a rational change, while being a conservative exten-
sion of KM belief revision. This requires in particular to
adequately adapt the definition of belief expansion, since
its direct translation is not adequate for non classical set-
tings. We provide a representation theorem for this class of
revision operators in terms of plausibility preorders on LP
worlds (faithful assignments). And we define a whole fam-
ily of distance-based operators that generalize Dalal revision
in this setting.

2 Proposal
Representative LP models
First, it is useful to see that all LP worlds can be partially
ordered, i.e., ω �LP ω′ if whenever ω′ associates a vari-
able with a classical value “true” of “false”, ω associates
that variable with the same classical value. Thus ω �LP ω′

could be read as ω′ is “less classical” than ω. In particular,
the LP worlds that are minimal with respect to �LP form
the set of all classical worlds. A crucial observation is that
if an LP world ω is an LP model of a formula α, then all
LP worlds ω′ such that ω �LP ω′ are also LP models of
α. This means that the only “meaningful” LP models of a
formula α are the set of its minimal elements w.r.t.�LP , de-
noted by JαK?. We call the set JαK? the representative set
of LP models of α, and we can show that JαK = JβK if and
only if JαK? = JβK?.

Belief Expansion in LP
The notion of representative set allows one to formalize the
notion of expansion in the LP setting, an operation on which
belief revision relies. The expansion of ϕ by µ, denoted by
ϕ + µ, simply consists in “adding” µ into ϕ. In particu-
lar, ϕ + µ is a formula that does not question what could
be already derived from ϕ, and it particular it may be an



inconsistent formula (in the classical sense). In the classi-
cal case, expansion corresponds to the conjunction ϕ ∧ µ.
But while in the classical case, all classical worlds have the
same status, this is not the case in LP: as we have seen be-
fore, some LP worlds are more “important” than others to
characterize the LP models of a formula. So in LP, we rather
focus on the representative set of LP models of ϕ to per-
form the selection: we define the LP-expansion ϕ +LP µ
as a formula whose representative set is characterized by
Jϕ +LP µK? = JϕK? ∩ JµK. That is, one selects the rep-
resentative LP models of ϕ that are LP models of µ. When
this set is non-empty, we say that the expansion is conclu-
sive. Interestingly, in the same way conjunction is the only
operator satisfying the Gärdenfors expansion postulates in
the classical setting (Gärdenfors 1988), we show that +LP

as defined above is the only operator that satisfies (an adap-
tation of) the expansion postulates to the LP setting.

LP Revision
Based on our LP-expansion operator, we propose the follow-
ing set of postulates for LP revision:

(LP1) ϕ ◦ µ |=LP µ

(LP2) If ϕ+LP µ is conclusive, then ϕ◦µ ≡LP ϕ+LP µ

(LP4) If ϕ ≡LP ϕ′ and µ ≡LP µ′, then ϕ◦µ ≡LP ϕ′◦µ′

(LP5) (ϕ ◦ µ) +LP µ
′ |=LP ϕ ◦ (µ ∧ µ′)

(LP6) If (ϕ ◦ µ) +LP µ
′ is conclusive,

then ϕ ◦ (µ ∧ µ′) |=LP (ϕ ◦ µ) +LP µ
′

These postulates are similar to the original KM ones, ex-
cept that we use the LP entailment in place of the classical
entailment, and we use the LP-expansion instead of the clas-
sical expansion (i.e., instead of the conjunction). Thus, each
postulate (LPi) above is a direct translation of the original
KM postulate (Ri). Noteworthy, (LP3) does not appear in
the list. Indeed, the KM postulate (R3) says that the re-
vised result ϕ ◦ µ should be consistent whenever the new
information µ is consistent. When interpreting the notion of
consistency in terms of non-emptiness of set of models, a di-
rect adaptation of this postulate to LP would not make sense
anymore: since every formula has a non-empty set of (rep-
resentative) LP models, it is trivially satisfied. However, we
discuss some possible adaptation of (R3), and show that the
set of all postulates (including the adaptation of (R3)) can
be viewed as a conservative extension of the KM postulates
in LP (see (Schwind, Konieczny, and Pino Pérez 2022) for
details).

Representation Result
Similarly to the classical case, every LP revision operator
can be characterized in terms of an LP faithful assignment,
i.e., by associating each ϕ with a total preorder over LP
worlds �ϕ. This time, the first level of each total preorder
ϕ corresponds to the representative set of LP models of ϕ.
To revise ϕ by a formula µ, one takes as a result a for-
mula ϕ ◦ µ whose LP models are the LP-closure of the LP
models of µ that are minimal in �ϕ, where the LP-closure
of a set of LP worlds S, denoted by Cl(S), is defined by
Cl(S) = {ω | ∃ω′ ∈ S, ω′ �LP ω} (accordingly for every

set of LP worlds S, there is always a formula α such that
JαK = Cl(S)).
Theorem 1. An operator ◦ is an LP revision operator (i.e.,
it satisfies (LP1-LP6)) if and only if there is an LP faithful
assignment ϕ 7→�ϕ associating every formula with a total
preorder over LP worlds such that for all formulae ϕ, µ,
Jϕ ◦ µK = Cl(min(JµK,�ϕ)).

Distance-Based LP Revision
Lastly, we introduce a class of LP revision operators that
are based on a distance between LP worlds. In the classical
case, an interesting example of distance is the Hamming dis-
tance between worlds, which defines the well-known Dalal
revision operator. We propose to extend that distance to the
LP case. In the classical case, Hamming distance consists in
counting the number of differences, of “changes”, between
two classical worlds. But in the three-valued LP setting,
we have three values, and the “change” between “true” and
“both” may not be the same as the change between “true”
and “false”. So to be as general as possible, we consider a
distance which counts the number of changes between two
LP worlds, where this change is given by a distance db be-
tween two truth values: d(ω, ω′) =

∑
xi
db(ω(xi), ω

′(xi)).
For instance, the choice of a value for db(true, both) repre-
sents, for the underlying agent, the cost of change from the
value “true” to “both” for any variable. We show that under
very natural conditions on db, the only value that matters in
the definition of such a distance-based operator is the cost
of change C from a classical truth value (“true” or “false”)
to the value “both”. This means that overall, to define a
distance-based operator, one has a one-dimensional choice
space which corresponds to whether one wants to model a
revision behavior that is reluctant to change (a high value
for C), or inclined to change (a low value for C).
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