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Hybrid classical planning, where classical task planning
is integrated with low-level feasibility checks (e.g., motion
planning that utilizes collision checks), has received atten-
tion in AI and Robotics communities (Erdem et al. 2011;
Hertle et al. 2012; Plaku 2012; Kaelbling and Lozano-
Pérez 2013; Srivastava et al. 2014; Lagriffoul et al. 2014;
Hadfield-Menell et al. 2015; Erdem, Patoglu, and Schüller
2016), due to the cognitive skills required by autonomous
robots in the real-world. Since these studies rely on clas-
sical planning methods, they assume complete knowledge
about the initial states, and full observability of the environ-
ment, while computing a hybrid classical plan (i.e., a se-
quence of actuation actions) offline. During the execution
of these plans, discrepancies might occur between the ex-
pected states and the observed states, due to contingencies
that were not or could not be considered during offline plan-
ning. For instance, a robot may consider that initially all
utensils in a cabinet are clean, and compute a hybrid classi-
cal plan to set up a table accordingly. While executing this
plan, the robot may detect (e.g., by its sensors) that the plate
that it picks from the cabinet is not clean. To cope with such
contingencies, the robots are usually equipped with a plan
execution monitoring algorithm. According to such an al-
gorithm, when a discrepancy is detected, the robot tries to
recover from the discrepancy, generally by replanning from
that point on.

As an alternative approach to computing offline hybrid
classical plans and then dealing with discrepancies/surprises
online during plan execution by monitoring and replanning,
we propose a parallel offline hybrid method, called HC-
PLAN. This method suggests extending hybrid planning be-
yond classical planning, by inheriting advantages of condi-
tional planning to deal with contingencies due to incomplete
knowledge and partial observability. In conditional plan-
ning, in addition to actuation actions with deterministic out-
comes, sensing actions with nondeterministic outcomes are
considered as part of planning in order to gather the relevant
missing knowledge. Every possible outcome of sensing ac-
tions leads to a possibly different conditional plan. There-
fore, a conditional plan looks like a tree of actions, where
the branching occurs at vertices that characterize sensing ac-
tions, and the other vertices denote actuation actions. Each
branch of such a tree, from the root to a leaf, essentially rep-
resents a possible execution of actuation actions and sens-

ing actions to reach a goal state from the initial state. HC-
PLAN utilizes this advantageous aspect of conditional plan-
ning while computing offline plans: planning for nondeter-
ministic sensing actions to gather missing knowledge when
needed, while planning for deterministic actuation actions.
Moreover, HCPLAN integrates feasibility checks not only
for executability of actuation actions, but also for executabil-
ity of sensing actions.

HCPLAN is a parallel algorithm: it computes a hybrid
conditional plan by intelligently orchestrating the computa-
tion of its branches in parallel. According to HCPLAN, com-
putation of every branch starting from a vertex that charac-
terizes a sensing action is viewed as a computation task with
a priority (e.g., defined relative to the depth of that vertex),
and the batches of computation tasks are solved in parallel
with respect to their priorities so as to consume the compu-
tational resources more effectively. Furthermore, HCPLAN
avoids re-computation of the same task that may appear at
different parts of the tree.

Each computation task handled by HCPLAN takes as in-
put an incomplete initial state, and returns a hybrid se-
quential plan (i.e., a sequence of deterministic actuation ac-
tions and nondeterministic sensing actions) that describes a
branch of the tree. A hybrid sequential plan is not a hybrid
classical plan, since it may involve nondeterministic sens-
ing actions as well. Therefore, solving a computation task
(i.e., the computation of each branch of a hybrid conditional
plan) also requires cognitive abilities beyond hybrid classi-
cal planning. For that, HCPLAN adapts some advantages
of causality-based non-monotonic logics (Turner 2008; Gel-
fond and Lifschitz 1998) for a novel solution to deal with
these challenges. In particular, HCPLAN utilizes defaults to
express assumptions (e.g., the location of an object remains
to be the same unless changed by an actuation action), ex-
ogeneity of actions to express that sensing actions may oc-
cur at any time when possible, and nondeterministic causal
laws to choose an outcome of a sensing action included in
the computation of a branch. The defaults are useful for
formalizing assumptions in that, when an exception occurs
contrary to the assumptions, it does not lead to an inconsis-
tency. This is an important aspect of defaults, providing a
solution to the famous frame problem. Exogeneity of ac-
tions is useful in that it is not required in advance to specify
the order of nondeterministic sensing actions while solving



a task. HCPLAN uses the nonmonotonic reasoning system
CCALC (McCain and Turner 1997) to compute each branch
of a hybrid conditional plan.

We show a real-world application of HCPLAN where a
mobile bi-manual service robot sets up a table for lunch.
While computing a hybrid conditional plan, the robot has
to consider various contingencies that are not known in ad-
vance. Furthermore, while planning for its actions, the robot
has to consider different types of feasibility checks (e.g.,
reachability, graspability, collisions), as well as common-
sense knowledge. Once a hybrid conditional plan is com-
puted by HCPLAN, we also illustrate possible executions of
this plan.

To evaluate the strengths and weaknesses of HCPLAN by
means of experimental evaluations, we construct a bench-
mark suite over the kitchen table setup domain. We evalu-
ate HCPLAN from the perspectives of computation time and
plan quality, compare it with the closely related planners,
and with an execution monitoring algorithm that utilizes hy-
brid planning and guided re-planning.

We refer the reader to our journal paper (Nouman,
Patoglu, and Erdem 2021) for further information.
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