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Abstract

Our work addresses the generation of first-order constraints to
reduce symmetries and improve the solving performance for
classes of instances of a given combinatorial problem. To this
end, we devise a model-oriented approach obtaining positive
and negative examples for an Inductive Logic Programming
task by analyzing instance-specific symmetries for a training
set of instances. The learned first-order constraints are inter-
pretable and can be used to augment a general problem en-
coding in Answer Set Programming. This extented abstract
introduces the context of our work, contributions and results.

1 Introduction
Modern declarative programming paradigms allow for rela-
tively simple modeling of various combinatorial problems.
However, solving such problems might become infeasible
when the size of input instances and, correspondingly, the
number of possible solution candidates start to grow (Do-
daro et al. 2016). Often many of these candidates are sym-
metric, namely, one candidate can be obtained from another
by renaming constants. Therefore, the ability to incorporate
Symmetry Breaking Constraints (SBCs) in a problem encod-
ing becomes an essential skill for programmers. Neverthe-
less, identifying symmetric solutions and formulating con-
straints that remove (only) them might be a time-consuming
and challenging task. Consequently, various tools emerged
for avoiding the computation of symmetric solution candi-
dates. A popular technique consists of the automatic de-
tection and introduction of SBCs using properties of per-
mutation groups, while dynamic approaches apply specific
search methods that detect and discard symmetric states; see
(Sakallah 2009; Walsh 2012) for overviews.

In general, two families of automatic symmetry break-
ing techniques can be distinguished: instance-specific and
model-oriented approaches. The former identify symmetries
for a particular instance at hand and augment a ground prob-
lem representation with specific SBCs to improve the sub-
sequent solving process. Unfortunately, computational ad-
vantages do often not carry forward to large-scale instances
or advanced encodings, where instance-specific symmetry
breaking can require as much computational effort as it
takes to solve the original problem. Moreover, ground SBCs
generated by instance-specific approaches are (i) not trans-
ferable, since the knowledge obtained is limited to a sin-

gle instance; (ii) usually hard to interpret and comprehend;
(iii) derived from permutation group generators, whose com-
putation is itself a combinatorial problem; and (iv) often re-
dundant and might result in a degradation of the solving per-
formance. In contrast, model-oriented approaches aim to
find general SBCs that depend less on a particular instance.

For problem encodings in Answer Set Programming
(ASP) (Brewka, Eiter, and Truszczyński 2011; Gebser et al.
2012; Lifschitz 2019), the tool SBASS (Drescher 2015) im-
plements an instance-specific symmetry breaking approach
for ground programs. However, to the best of our knowl-
edge, there was no model-oriented system to lift ground
SBCs for ASP programs. Therefore, in (Tarzariol, Geb-
ser, and Schekotihin 2021), we have introduced a novel
model-oriented method, using Inductive Logic Program-
ming (ILP) (Cropper, Dumančić, and Muggleton 2020) to
generalize the process of discarding redundant solution can-
didates for instances of a target domain. ILP is a form
of machine learning whose goal is to learn a logic pro-
gram that explains given observations in the context of some
pre-existing knowledge. The currently most expressive ILP
system for ASP is ILASP (Law, Russo, and Broda 2020;
Law, Russo, and Broda 2021), which can be used to solve
a variety of ILP tasks.

2 Paper Contributions
The goal of our work is the identification and lifting of SBCs
obtained for small instances of a combinatorial problem en-
coded in ASP, in order to derive interpretable first-order con-
straints. Such constraints cut the search space, while pre-
serving the satisfiability of a problem for the considered in-
stance distribution, and improve the solving performance,
especially in the case of unsatisfiability. More precisely,
in our original paper, we (i) propose an approach to gener-
ate a training set including positive and negative examples,
allowing an ILP method to learn first-order SBCs for the
problem at hand; (ii) define the components of ILP learn-
ing tasks enabling the generation of effective constraints
for ASP solving; (iii) show how to apply our method iter-
atively, to revise first-order constraints when new permu-
tation group generators or more training instances become
available; and (iv) conduct experiments on variants of the pi-
geon-hole problem as well as the application-oriented house
configuration problem (Friedrich et al. 2011).



3 Discussion of Results
The results of experiments in our paper show that the intro-
duced learning framework manages to significantly outper-
form a state-of-the-art instance-specific method (SBASS) as
well as the ASP system CLINGO (Gebser et al. 2012) without
SBCs for a family of combinatorial problems. The solving
speed-up is not the only improvement, as the learned first-
order constraints are also better interpretable than ground
SBCs, which are even not represented symbolically but in
the SMODELS internal format (Syrjänen 2001) resembling
DIMACS for propositional formulas. We believe that our
paper can be of interest to a broad KR community, as it com-
bines machine learning with KRR methods to gain insights
and performance improvements for classes of problem in-
stances. Although our method is designed and implemented
for ASP, the main concepts can be applied to other KR for-
malisms as well, like constraint or logic programming. This
may benefit KR applications in practice and especially in in-
dustrial settings, where the prevalent process and customer
demands tend to remain stable over significant time periods.
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Schenner, G.; and Schreiner, H. 2011. (Re)configuration
using answer set programming. In IJCAI 2011 Workshop on
Configuration, 17–24. CEUR-WS.org.
Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2012. Answer Set Solving in Practice. Synthesis Lectures on
Artificial Intelligence and Machine Learning. Morgan and
Claypool Publishers.
Law, M.; Russo, A.; and Broda, K. 2020. The ILASP system
for inductive learning of answer set programs. The Associ-
ation for Logic Programming Newsletter.

Law, M.; Russo, A.; and Broda, K. 2021. Ilasp. www.ilasp.
com.
Lifschitz, V. 2019. Answer Set Programming. Springer-
Verlag.
Sakallah, K. 2009. Symmetry and satisfiability. In Biere, A.;
Heule, M.; van Maaren, H.; and Walsh, T., eds., Handbook
of Satisfiability, volume 185 of Frontiers in Artificial Intelli-
gence and Applications. IOS Press. chapter 10, 289–338.
Syrjänen, T. 2001. Lparse 1.0 user’s manual.
Tarzariol, A.; Gebser, M.; and Schekotihin, K. 2021. Lift-
ing symmetry breaking constraints with inductive logic pro-
gramming. In Zhi-Hua, Z., ed., Proceedings of the Thirtieth
International Joint Conference on Artificial Intelligence (IJ-
CAI’21), 2062–2068. ijcai.org.
Walsh, T. 2012. Symmetry breaking constraints: Recent
results. In Hoffmann, J., and Selman, B., eds., Proceedings
of the Twenty-Sixth National Conference on Artificial Intel-
ligence (AAAI’12), 2192–2198. AAAI Press.

www.ilasp.com
www.ilasp.com

	Introduction
	Paper Contributions
	Discussion of Results

